
A DESCRIPTION AND COMPARISON OF SUBROUTIN~S
FOR COMPUTING EUCLIDEAN INNER PRODUCTS ON THE IBM 360

BY

MICHAEL A. MALCOLM

STAN-CS-70-175

OCTOBER 1970

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Sprl"9fleld, Yo. 12151

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

T~ docum~t a03 bet>n ~provtd
for puhl.ic r~ cmd ~i lJa
c:l.LIUibutk:m Is tml......SM-

^^»^ ^^^

r*

A DESCRIFTION AKD COMEARISOH OF SUBROUTINES

FOR COMHJTING EUCLIDEAN INNER PRODUCTS ON THE IBM 560

Michael A. Malcoljn

^^^ mmw

■:/.',-

K

I. Introduction

In many algorithms, a Euclidean inner product of two vectors must

be computed with greater precision than the rest of the calculations.

An example is the calculation of the residual vector

r = b-Ax i1)

used in an algorithm for improving an approximate solution x of

the lineP1- system

Ax = b .

When the inner product occurs in an algorithm coded in short

precision, it is usually sufficient to accumulate it in long precision

(double precision). Long-precision arithmetic is a hardware feature of

many machines; if so, the inner product is easily coded and quickly

executed. However, when long^precision arithmetic is not available, or

when the entire algorithm is coded in long precision, the inner product

routine becomes more difficult to code and execution time may become

excessive.

This report is primarily ccncerned with existing routines for

evaluating inner products using more precision than long, for use within

long-precision programs for the IBM System/560. Several such subroutines

can be called from Fortran H programs; one is available for Watfor (or

Watfiv) Fortran programs and one for Algol W.

^*^

II. Algol W

The double precision inner product routine available for Algol W

programs is the

long real procedure ip2 (integer i; integer value i, B, U;

long real a, b; long real value c);

comment This procedure computes the sum of products a/b and

adds it to the extra term c. The bound variable i is used

to indicate the subscript in the components of the vectors

a and b over which the scalarproduct is foimed. Although the

procedure body is more complicated, it can be illustrated as

follows:

begin long real sum, sum := 0.0L,

for i : = i step s until u do sura : = sum + a*b,

sum + c

end;

Jensei's device is used through the bound variable i . For example,

ip2 could be used to compute the vector r in Equation (l) as follows:

for i := 1 step 1 until n do

r(i) := -ip2(k,l,l,n,A(i,k),x(k),-b(i))

Since each product has 28 significant hex digits and a double word has

only 1^ digits, a technique related to that suggested by Miller [I965]

is used to retain full significance. For illustrative purposes, consider

the following segment of an Algol W program:

real tj long real a, al, a2, b, bl, b2, bj;

comment a and b have been assigned double precision values;

t

t

t

= a; al := t; a2 := a -al;

= b; bl := t; b5 := b -bl;

= b5; b2 := t; b5 := b5-b2;

A

r

I

%

The above program segment splits the numbers a and b so that

a = al+a2

b = bl + b2 + b3 •

Thus

axb = (al+a2) x (bl+b2 + b3)

= al*bl + al*(b2 + b5) + a2*bl + a2*b2 + a2*b5 (2)

where * indicates double-precision floating-point multiplication and

the symbols x , + and = have the usual mathematical interpretation.

The terms of Equation (2) are accumulated using a technique

suggested by Malcolm [1970]. It follows directly from Theorem 2 in

Malcolm [1970] that provided n < 1510? , the result (|) calculated by

ip2 satisfies

1=1(1+0 (5)

where

|e| <U.l6 •12

and I is the exact result. The procedure can be easily modified to

accommodate n > 13107 and still satisfy Equation (5) •

The parameters i , a and b are passed by name to give maximum

generality. One may wish to modify this to economize on execution time.

1

M

*^*m

III. Wat for (or Watfiv) Fortran

The same techniques used in ip2 are implemented in two Fortran

subroutines: D:PPUT(A,B) and IPTOTL(S) . The call:

CALL DPFUT(A,B)

adds the product A x B (A and B are double precision) to the

accumulators. The call:

CALL IPTOTL(S)

sums the accumulators and assigns the long precision result to S . The

subroutine IPTOTL leaves the accumulators in their initial state (all

zero).

The result S (= l) satisfies (5) provided DPIUT has not been

called more than 13,107 times since the accumulators were last initialized.

DPHJT and IPTOTL use a named common area called DPACCC for storing

the accumulators. A BLOCK DATA subprogram is used for initializing the

named common data area.

Following is an example using DPHJT and IPTOTL to calculate the

r vector in Equation (l).

D0 10 I = 1,N
D0 5 J = 1,N

5 CALL DPRJT(-A(I,J),X(J))
CALL DPRJT(B(I),1.0D0)

10 CALL IPT0TL(R(I))

IV. Fortran H

Several efficient subroutines can be called by a Fortran H program

for computing double-plus inner products.

; U-

i

mm^ ^^

A. VPR2

VP1R2 is a subroutine written by Ehrman [I967] that forms the

double-long product of two double precision arguments and adds it to a

double-long sum. For example, VPR2 could be used for conputing the r

vector of Equation (l) as follows:

REALMS R1(2),A(N),B(N),X(N),R(N)
INTEGER IEXP

i
D0 10 I = 1,N
IEXP = 0
Rl(l) = 0.0D0
Rl(2) = 0.0D0
D0 5 J = l^N

5 CALL VPR2(-A(I,J),X(J),R1(1),IEXP)
GAIL VPR2(1.(2D0,B(I),R1(1),IEXP)
IF (IEXP NE.O) G0 T0 100

10 R(I) = Rl(l)

9

100 {write error message and/or terminate)

In the above example, Rl is an accumulator with 50 hex digits (two double

words with the exponent) and IEXP is used as an indication of underflow or

overflow.

Although VPR2 uses a 50 hex digit accumulator, it can still result

in a large relati/e error. Examples can be constructed that result in no

significant digits. However, practical algorithms in which this phenomenon

causes an unacceptable loss of precision are probably rare.

All calculations in VPR2 are perfomed in the "general registers".

Although ^2 requires a subroutine linkage for each term of the inner

product, execution times compare favorably with the fastest routines.

■/'■

1 ,

B. DPHJT and IPTOTL

The routines described in Part III for use in Watfor are available

in more efficient versions coded in PL560 for use with Fortran H. The

PL360 versions of DHUT and IPTOTL differ from the Fortran versions in

that full precision accuracy is obtained and the result is correctly-

rounded. This is achieved by a technique described in Section V of

Malcolm [1970]. Also, the result has full precision accuracy and is

correctly rounded.

C. DPDOTP

DEDOTP is a PL360 function subroutine which uses the same techniques

as DPHJT and IPTOTL described above. The function call for DPDOTP has a

variable length parameter list. The full formal parameter list is:

DPDOTP(A, B, N, XTERM, INCA, INCB, PVA, PVB)

where

A,B — The locations of the first components of the long-precision

vectors to be multiplied

N — The number of terms entering the inner product

XTEKM -- An extra double precision term to be added to the inner

product (optional)

INCA — Number of (double) words separating successive elements of

the vector' A (optional)

INCB — Number of (double) words separating successive elements of

the vector B (optional)

fei 1
■"- '- ^

A-

PVA

PVB

Integer vector specifying a permutation of the elements

of the vector A (optional)

Integer vector specifying a permutation of the elements

of the vector B (optional)

In the actual parameter list, only the first three parameters (A , B

and N) are required. Default values of the remaining parameters are:

XTEBM = 0. 0D0

INCA = 1

INCB = 1

FVA(I) = I (I = 1,2,...)

FVB(I) = I (I = 1,2,...)

For illustrative purposes assume the following declarations

3EAL*8 DH)OTP,A(N,N),B(N),C(N),SUM,R(N),X(N)
mTEGERH PA(N)

Note that DPDOTP must be declared as a long-precision floating-point

variable. A statement Trtiich sets SUM to the inner product of the vectors

B and C is

SUM = DEDOTP(B,C,K)

Another example Is the calculation of the residual vector in Equation (l);

D0 10 I = 1,N
10 R(I) = -DPD|ÖTP(A,X,N,-B(I),N)

In this example, INCA must be N because Fortran stores the array A

in column order (see the Fortran IV(H) Programmer's Guide) which means

neighboring elements In a given row of A are separated by N double

words. If the columns of A , in the above example, were pennuted as

* .; ■

! » ■(•»":

m Mfe

:•.,. »

specified by the integer vector PA , the calculation of the residual

vector would then be as follows:

D0 10 I = 1,N
10 R(I) = -DH)|!5TP(A,X,N,-B(I),N,1,PA)

A EL560 single precision function subroutine for calculating the exact

rounded inner product of single precision vectors is also available. This

routine, called SIDOTP, has the same calling sequence as DH)0TP.

D. DOTP

DOTP is cm Assembler Language function subroutine written at

Argonne National Laboratories (see Jordan [1967]). The formal parameter

list is

D0TP(A,B,N)

where

A, B — The locations of the first components of the vectors to

be multiplied

N — The number of terms entering the inner product

For example, the residual vector in Equation (1) could be calculated as

follows:

REAL*8 D0TP,A(N,N),X(N),B(N),R(N),TIMP(N)

•
D0 10 I = 1,N •
D0 5 J = 1;N

5 TIMP(J) = A(I,J)
10 R(I) = B(I) -D0TP(TEMP,X,N)

Note that DOTP must be declared as a long-precision variable.

8

'
,\

-.
f ■

tk

^

DOTP uses the same techniques as DH)OTF (i.e., splitting the

operands and 52 accumulators); however, DOTP does a number of internal

subroutine linkages (proportional to N) to code that is In line in

DEDOTP.

V. Comparison of Execution Times

Each of the routines described abrve has undergone extensive

tests to insure accuracy. In additlun to these tests, each routine

was timed on the 560/67 with the following two calculations:

Test No. 1:

Test No. 2:

N t
k=l

N

aik X bk

X b.

■ ■'■

1
1

Each factor a.. > *}, * ^v entering the Inner product for these tests

was equal to 3.1^15926535897932 .

The experimental results are tabulated in Table I in terms of values

of K for determining execution time according to

execution time = K x N

in milliseconds.

The people who programmed the various routines are acknowledged

in Table I.

A

m i ■ wtm W •*~~^m

TABLE I

Values of K for

execution time = KXno. of terms in inner product (ms) 1/

Calling
Language

Inner
Product
Routine

Inner
Product

Conrpiler Programmer

K
for

K
for

Algol W IPS Algol W
(w/o $N0CHECK)

Michael
Saunders

0.710 0.705

Algol W ip2 Algol W
(with $N0CHECK)

Michael
Saunders

0.5UU 0.526

Fortran DPIUT
IPTOTL

Watfiv
(w/o NCTHBCK)

Gordon
Gullahorn

2.12 2.05

Fortraji DPHJT
IPTOTL

Watfiv
(with NOCHECK)

Gordon
Gullahorn

2.11 2.06

Fortran DPHJT
IPTOTL

Fortran H
opt = 0

Gordon
Gullahorn

0.h2k 0.h21

Fortran DPHJT
IPTOTL

Fortran H
opt - 2

Gordon
Gullahorn

0.352 0.332

Fortran DPHJT
IPTOTL

PL560 Michael
Malcolm

0.212 0.210

Fortran DPDOTP PL560 Michael
Malcolm

O.lQk 0.18U

Fortran VPR2 OS/Assembler John Ehrman O.I96 0.196

Fortran DOTP OS/Assembler
*

D. Jordan 0.2^2 0.218

-' All tests were performed on an IBM 560/67,

10,

' • ,7 >•.■

•ii),, ,

■ i ir- ■ ■

'•

I

VI. ConeluBIons

Many long-precision routines requiring accurate inner products

can be coded in either Fortran or Algol W. For Fortran, DPPUT and IFTOTL

are probably the most useful for three reasons: (l) they are easy to use

and fast; (2) accuracy of the result is guaranteed; and (?) programs

using them can be debugged and run with the Watfor (or Watflv) compiler.

For programs which are to be debugged and run with the Fortran H compiler,

DIDOTF is probably the best because it is easy to use, execution time is

minimal and the result is guaranteed.

11

A

i i ii lai r ii ^^fc.^j^^^

^ ■^^^

Bibliography

Ehrman, John [IO67]. "Double-Double Accumulation of Inner ProductB."

Stanford University Computation Center, Extrinsic Program Library No. C 003.

Fortran IV(H) Programmer's Guide. IBM System/360 Operating System.

File No. S360-25, Fonn C28-6602-3.

Jordan, D. F. [1967]. ANL-F15^5-DOTP, "Extra-Precision Accumulating

Inner Product." Argonne National Laboratory, Applied Mathematics

Division. System/360 Library Subroutine. Argonne, Illinois.

November.

Malcolm, Michael [1970]. "An Algorithm for Floating-Point Accumulation of

Sums with Small Relative Error." Technical Report No. STAN-CS-7O-I63.

Computer Science Department, Stanford University. June.

Miller, Ole [I965]. "Quasi Double-Precision in Floating-Point Addition."

BIT 5« 37-50.

12

A

-

^^»^i w^m^

Unclassified
8rc junuClMjUicjUo^

DOCUMENT CONTROL DATA -RID

I. OmOlNATINO kCTIVITV (CotpOMt* »Uthof)

Stanford University

M. ftlPOMT tlCUKITV Ct.*ttlFtC*TrON

Unclassified
16. OMOUP

i mmmom TITLC

A DESCRIPTION AND COMPARISON OF SUBROUTINES FOR COMPUTING EUCLIDEAN INNER
PRODUCTS ON THE IBM 56O

4. ottCHiPTivl NOT** (Typ* el fpctt ttd Inclutlr» dtltn)

%■ AUTHOftiti (Flnli—m; mltldle Initial, Imil ntm»)

Michael A. Malcolm

«. MCPORT DAT!

October 1970
•«. CONTKACT OR OR»NT NO.

OUR 0^^-211 NSF GJ kQQ
b. PROJtCT NO.

im, TOTAL NO. OF PAOC*

12
Tb, NO. OF RCF*

M. ORIOINATOR'f RKRORT NUMtCRItt

t*. OTHKR RKPORT NOttl (Any olhtt numbttt lhal mmy ba attlgntd
Ihlt report)

None

10. DISTRIBUTION tTATIMKNT

Distribution of this document is unlimited

II. luPRLEMCNTARV NOTCt 11. IRONIORINO MILITARY ACTIVCV

Office of Naval Research, Pasadena Branch
Office

rational Science Foundation, Comp. Scl. Dlv.
»CT

Several existing subroutines and an Algol W procedure for computing inner
products on the IBM 360, using more precision than long, are described and
evaluated. Error bounds (when they exist) and execution timing tests are Included.

/^

DD .^..1473
S/N 0101.807.6S01

(PAGE 1)

curity Clastirlcatlon

^MMM ■ m

■I ! WI*W

14

Unclassified
■•cwrlty CU»»»tc«tiöiir

MtV WOROI

Inner Product
Euclidean Inner Product
Multiple-Precision Arithmetic

DD ,,2?..1473 <BACK)
(PAGE 2)

NOLI WT

LINN • LINK C

NOLI WT NOLK WT

Unclassified
Security Claaslflcttien

1

^■■M^ftM^MMB^^riMflH

